Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30833954

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are present at low and controlled levels under normal conditions. These reactive molecules can increase to high levels under various biotic and abiotic conditions, resulting in perturbation of the cellular redox state that can ultimately lead to oxidative or nitrosative stress. In this review, we analyze the various effects that result from alterations of redox homeostasis on plant glycolytic pathway and tricarboxylic acid (TCA) cycle. Most documented modifications caused by ROS or RNS are due to the presence of redox-sensitive cysteine thiol groups in proteins. Redox modifications include Cys oxidation, disulfide bond formation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. A growing number of proteomic surveys and biochemical studies document the occurrence of ROS- or RNS-mediated modification in enzymes of glycolysis and the TCA cycle. In a few cases, these modifications have been shown to affect enzyme activity, suggesting an operational regulatory mechanism in vivo. Further changes induced by oxidative stress conditions include the proposed redox-dependent modifications in the subcellular distribution of a putative redox sensor, NAD-glyceraldehyde-3P dehydrogenase and the micro-compartmentation of cytosolic glycolytic enzymes. Data from the literature indicate that oxidative stress may induce complex changes in metabolite pools in central carbon metabolism. This information is discussed in the context of our understanding of plant metabolic response to oxidative stress.

2.
PLoS One ; 13(9): e0204530, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30252897

RESUMO

In plant cells, many stresses, including low oxygen availability, result in a higher production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules can lead to redox-dependent post-translational modification of proteins Cys residues. Here, we studied the effect of different redox modifications on alcohol dehydrogenase (ADH) from Arabidopsis thaliana. ADH catalyzes the last step of the ethanol fermentation pathway used by plants to cope with energy deficiency during hypoxic stress. Arabidopsis suspension cell cultures showed decreased ADH activity upon exposure to H2O2, but not to the thiol oxidizing agent diamide. We purified recombinant ADH and observed a significant decrease in the enzyme activity by treatments with H2O2 and diethylamine NONOate (DEA/NO). Treatments leading to the formation of a disulfide bond between ADH and glutathione (protein S-glutathionylation) had no negative effect on the enzyme activity. LC-MS/MS analysis showed that Cys47 and Cys243 could make a stable disulfide bond with glutathione, suggesting redox sensitivity of these residues. Mutation of ADH Cys47 to Ser caused an almost complete loss of the enzyme activity while the Cys243 to Ser mutant had increased specific activity. Incubation of ADH with NAD+ or NADH prevented inhibition of the enzyme by H2O2 or DEA/NO. These results suggest that binding of ADH with its cofactors may limit availability of Cys residues to redox modifications. Our study demonstrates that ADH from A. thaliana is subject to different redox modifications. Implications of ADH sensitivity to ROS and RNS during hypoxic stress conditions are discussed.


Assuntos
Álcool Desidrogenase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Linhagem Celular , Cisteína/química , Cisteína/genética , Dissulfeto de Glutationa/química , Dissulfeto de Glutationa/metabolismo , Hidrazinas/farmacologia , Peróxido de Hidrogênio/farmacologia , Mutagênese Sítio-Dirigida , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
3.
Front Plant Sci ; 7: 1942, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066493

RESUMO

In plant cells, an increase in cellular oxidants can have multiple effects, including the promotion of mixed disulfide bonds between glutathione and some proteins (S-glutathionylation). The present study focuses on the cytosolic isoform of the glycolytic enzyme triosephosphate isomerase (cTPI) from Arabidopsis thaliana and its reversible modification by glutathione. We used purified recombinant cTPI to demonstrate the enzyme sensitivity to inhibition by N-ethylmaleimide, hydrogen peroxide and diamide. Treatment of cTPI with diamide in the presence of reduced glutathione (GSH) led to a virtually complete inhibition of its enzymatic activity by S-glutathionylation. Recombinant cTPI was also sensitive to the oxidized form of glutathione (GSSG) in the micromolar range. Activity of cTPI was restored after reversion of S-glutathionylation by two purified recombinant A. thaliana cytosolic glutaredoxins (GRXs). GRXs-mediated deglutathionylation of cTPI was dependent on a GSH-regenerating system. Analysis of cTPI by mass spectrometry after S-glutathionylation by GSSG revealed that two Cys residues (Cys127 and Cys218) were modified by glutathione. The role of these two residues was assessed using site-directed mutagenesis. Mutation of Cys127 and Cys218 to Ser separately or together caused different levels of decrease in enzyme activity, loss of stability, as well as alteration of intrinsic fluorescence, underlining the importance of these Cys residues in protein conformation. Comparison of wild-type and mutant proteins modified with biotinyl glutathione ethyl ester (BioGEE) showed partial binding with single mutants and total loss of binding with the double mutant, demonstrating that both Cys residues were significantly S-glutathionylated. cTPI modification with BioGEE was reversed using DTT. Our study provides the first identification of the amino acid residues involved in cTPI S-glutathionylation and supports the hypothesis that this reversible modification could be part of an oxidative stress response pathway.

4.
Protein Expr Purif ; 110: 7-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25573389

RESUMO

The cDNA encoding for a Solanum tuberosum cytosolic pyruvate kinase 1 (PKc1) highly expressed in tuber tissue was cloned in the bacterial expression vector pProEX HTc. The construct carried a hexahistidine tag in N-terminal position to facilitate purification of the recombinant protein. Production of high levels of soluble recombinant PKc1 in Escherichia coli was only possible when using a co-expression strategy with the chaperones GroES-GroEL. Purification of the protein by Ni(2 +) chelation chromatography yielded a single protein with an apparent molecular mass of 58kDa and a specific activity of 34unitsmg(-1) protein. The recombinant enzyme had an optimum pH between 6 and 7. It was relatively heat stable as it retained 80% of its activity after 2min at 75°C. Hyperbolic saturation kinetics were observed with ADP and UDP whereas sigmoidal saturation was observed during analysis of phosphoenolpyruvate binding. Among possible effectors tested, aspartate and glutamate had no effect on enzyme activity, whereas α-ketoglutarate and citrate were the most potent inhibitors. When tested on phosphoenolpyruvate saturation kinetics, these latter compounds increased S0.5. These findings suggest that S. tuberosum PKc1 is subject to a strong control by respiratory metabolism exerted via citrate and other tricarboxylic acid cycle intermediates.


Assuntos
Citosol/química , Fosfoenolpiruvato/química , Proteínas de Plantas/isolamento & purificação , Piruvato Quinase/isolamento & purificação , Solanum tuberosum/química , Difosfato de Adenosina/química , Ácido Cítrico/química , Clonagem Molecular , Citosol/enzimologia , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Cetoglutáricos/química , Cinética , Peso Molecular , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/biossíntese , Piruvato Quinase/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Solanum tuberosum/enzimologia , Difosfato de Uridina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...